
A stochastic viability approach to flooding
prevention and adaptation

Clément Renault

June 19, 2013

Contents

1 Problem statement 2
1.1 Adaptation and prevention dynamics 2
1.2 Viability thresholds on budget and seawall 3
1.3 Viability kernels . 3

2 Numerical evaluations 4
2.1 Basics . 4
2.2 The use of dynamic programming in order to compute viability

kernels . 7
2.3 Graphical results . 10
2.4 Thresholds variations . 11

1 Problem statement

During this practical class we will consider a city that presents flooding risk.
You work with the city council and you have two possibilities to protect the
city: you can either build a seawall (or improve an existing one) or invest in
rescue measures. You want to plan the decisions for the period T = [t0, T]
in order to minimize the risk of facing a dramatic flooding. We will consider
time steps of one year (each year you decide where you want to invest and it
takes you one year to improve your system). A flooding generates a cost that
depends on its height. The city cannot afford more than a certain amount of
money each year for flooding and this includes both the cost of the measures
against flooding and the cost of flooding damages.

1.1 Adaptation and prevention dynamics

Building a seawall improves the city’s capacity C(t) to avoid a flood whereas
investing in rescue processes improves the city’s adaptation ability K(t).
During year t your city’s state is defined by x(t) = (C(t), K(t)). The set of
possible states for the city is X. Each year you will have to choose between
investing in one of those variables, investing in both or in none of them. Your
control variable is defined by u(t) = (c(t), k(t)) with U the set of possible
controls. Since the system can evolve we define a function Dyn from T×X×U
to X that represents the influence of the control variable on the state variable
:

x(t+ 1) = Dyn(t, x(t), u(t)) . (1)

Here the dynamic equations for your city are :

C(t+ 1) = C(t) + c(t) , (2)

and
K(t+ 1) = K(t) + k(t) , (3)

Of course you do not know the water level you will have to face on year t+1.
This water level is represented by the variable w(t+ 1) ∈W.
On year t H(C(t), w(t)) = w(t)−C(t) is the height of the flooding (if negative
you do not have a flooding).

2

1.2 Viability thresholds on budget and seawall

There are two viability thresholds that represent the fact that you cannot
spend too much money on flooding risk and that if the flooding is too im-
portant it will cause too much damage in the city:

• your budget is limited

∀t, L(t, x(t), u(t), w(t)) ≤ Lmax , (4)

• you do not want to have more a certain height of water in your city

∀t,H(C(t), w(t)) ≤ Hmax . (5)

At a given time t the set of states x(t) that verify the viability constraints
is noted A(t) and the set of controls that verify the viability constraints are
noted B(t, x(t)).

1.3 Viability kernels

Let’s introduce the notion of policy. A policy Pol is a function from T × X
to U so that u(t) = Pol(t, x(t)) that gives the decision to make at every time
and state of the city. The criterion chosen to evaluate a policy’s quality is
the probability of not respecting one of those viability thresholds during the
considered period. To be even more precise we will determine the viability
kernels of our system at a certain level of probability β :

Viabβ(t0) =

initial states

x ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists a policy Pol

and controls u(·) = (u(t0), .., u(T − 1))

and states x(·) = (x(t0), .., x(T)) with x(t0) = x

that verify t ∈ {t0, ..., T − 1}
the policy : u(t) = Pol(t, x(t))

the dynamic : x(t+ 1) = Dyn(t, x(t), u(t), w(t))

and so that :

P

w(·) ∈WT−t0

∣∣∣∣∣∣∣∣∣
∀t ∈ [t0, T − 1],

L(t, x(t), u(t), w(t)) ≤ Lmax,

w(t)− C(t) ≤ Hmax,

w(T)− C(T) ≤ Hmax

 ≥ β

(6)

3

These viability kernels can be numerically computed using dynamic pro-
gramming. This matter is discussed in Sustainable Management of Natural
Resources. Mathematical Models and Methods by Michel De Lara and Luc
Doyen. We will now look at an implementation of this method to compute
viability kernels. Then we will study the impact of thresholds variations on
the maximal probability of respecting the viability constraints for a given
state of the system.

2 Numerical evaluations

We consider that the random variables (w(0), ..., w(T − 1)) are continuous,
independent and identically distributed with a known distribution.

2.1 Basics

Let’s start with the basic functions of our program.

//CONTROLS, we d e f i n e here the c o n t r o l s we can have
c s t a t e = [0 : 1 : 1] ;
k s t a t e = [0 : 1 : 1] ;
//1 w i l l be an upgrade o f the cor re spond ing equipment
//0 means we don ’ t upgrade t h i s equipment

//VIABILITY CONSTRAINTS
h max= 150 ; //cm, t h i s i s the maximum he ight o f water we

want in our c i t y
cost max =1.5∗10ˆ7; // This i s the maximum you can spend

per year f o r the f l o o d i n g

function [t e s t]= t e s t v i a b (h , co s t)
t e s t=bool2s (h<h max)∗bool2s (cost<cost max+1) ;

endfunction
// This func t i on v e r i f i e s i f your system r e s p e c t s the

two v i a b l i t y c o n s t r a i n t s

//SIMULATION DURATION
hor izon =10; // in years

4

//POSSIBLE STATES
C state = [0 : 2 0 : 2 0 0] ;
K state = [0 : 0 . 1 : 1] ;

//FLOODING GENERATOR AND DAMAGE EVALUATION
// This f i r s t func t i on eva lua t e s the type o f f l o o d i n g we

w i l l have .
// I t i s based on h i s t o r i c a l data o f water r i s e in

r i v e r s . We d i s t i n g u i s h f i v e types o f r i s e .
function k =f l ood ing aux ()
s=rand () ;
k=0;
i f s>0.99 then k=4;

e l s e i f s>0.97 then k=3;
e l s e i f s>0.9366 then k=2;

e l s e i f s>0.8366 then k=1;
end ;
k ;
endfunction ;

//To each type o f r i s e i s a s s i gned a numerica l he ight
function [h]= f l o o d i n g ()

k=f l ood ing aux () ;
s=rand () ;
h=250+s ∗110 ;
i f k==0 then h=s ∗80 ;
e l s e i f k==1 then h=80+s ∗35 ;
e l s e i f k==2 then h=115+s ∗55 ;
e l s e i f k==3 then h=170+s ∗80 ;
end ;
h ;

endfunction

// According to the c i ty ’ s capac i ty C we determine the
he ight o f water in the c i t y .

function [d]= damage leve l (C, h)
h c i t y=max(0 , h−C) ;
d=0;

5

i f h c i ty >250 then d=4;
e l s e i f h c i ty >170 then d=3;
e l s e i f h c i ty >115 then d=2;
e l s e i f h c i ty >80 then d=1;
end ;
d ;

endfunction

//Then we eva luate the value o f the damages caused to
the c i t y .

// This depends on the c i ty ’ s adaptat ion capac i ty K.
function [c o s t]= damage value (d , K)

co s t =109.5∗10ˆ6;
i f d==0 then co s t =0;
e l s e i f d==1 then co s t =9.5∗10ˆ6;
e l s e i f d==2 then co s t =15.8∗10ˆ6;
e l s e i f d==3 then co s t =40.5∗10ˆ6;
end ;
c o s t=(1−K)∗ co s t ;

endfunction

//CONSTRUCTION COSTS
w k max=10ˆ7;
w c un i t =10ˆ7;
//We cons id e r the co s t o f bu i l d i ng 20cm of s eawa l l i s

constant :
function [w c]= c o s t c (C)

w c=w c un i t ;
endfunction

//But going from K−1 to K get s more and more expens ive
as K tends to 1

//The f i r s t adaptat ion measures are easy to implement
but then you need more complex systems .

function [w k]= c o s t k (K)
w k=w k max∗Kˆ2 ;

endfunction

6

2.2 The use of dynamic programming in order to com-
pute viability kernels

Now we can focus on the dynamic programming equation. To do this we
will first evaluate the probability to respect the viability constraints on year
t given a city state and controls. This is what the next function does.

// Here we generate a vec to r o f 10 000 r i v e r he i gh t s to
compute the p r o b a b i l i t i e s

vec t h = [] ;
for i =1:1:10000

vect h =[vect h , f l o o d i n g ()] ;
end ;

//Now we are ab le to determine the p r o b a b i l i t y to be
v i a b l e

// f o r a g iven s t a t e and c o n t r o l s
function [prob]= viab proba dyn ()

h=length (K state) ;
w=length (C state) ;
cc=length (c s t a t e) ;
kk=length (k s t a t e) ;
t o t=length (vec t h) ;

// prob i s our core matrix . I t i s t r i d i m e n s i o n a l .
//The f i r s t two dimensions r ep r e s e n t the s t a t e .
//The th i rd dimension r e p r e s e n t s a l l the p o s s i b l e

c o n t r o l s .
//We w i l l f i l l t h i s matrix with the p r o b a b i l i t y o f

be ing v i a b l e f o r a s t a t e and c o n t r o l s on a year t
prob=zeros (h ,w, cc∗kk) ; // i n i t i a t i o n o f prob : z e r o s

everywhere
for j =1:1 :w // loop on the p o s s i b l e K s t a t e s

for i =1:1 :h // loop on the p o s s i b l e C s t a t e s
for ccc =1:1 : cc // loop on the p o s s i b l e C

c o n t r o l s
for kkk =1:1 : kk // loop on the p o s s i b l e K

c o n t r o l s

7

t ry
// F i r s t we compute the co s t o f the c o n t r o l s

c o s t c o n t r o l e =(ccc−1)∗ c o s t c (
C state (j+ccc−1))+(kkk−1)∗
c o s t k (K state (i+kkk−1)) ;

//We i n i t i a t e the sum to eva luate the p r o b a b i l i t y o f
be ing v i a b l e f o r each s t a t e and c o n t r o l s

sum prob=0;
//We try a l l the va lue s in vect h and add 1 to sum when

i t i s v i a b l e
//we don ’ t f o r g e t the co s t o f the damages o f a

p o t e n t i a l f l o o d i n g
for k =1:1 : to t

sum prob=sum prob+t e s t v i a b
(vect h (k)−C state (j) ,
damage value (
damage leve l (C state (j) ,
vec t h (k)) , K state (i))+
c o s t c o n t r o l e) ;

end ;
//We repre s en ted the p o s s i b l e c o n t r o l s on only one

dimension in prob .
//The th i rd argument o f prob i s :
//1 : no investment in C or K
//2 : investment in C only
//3 : investment in K only
//4 : investment in C and K

prob (i , j , ccc+cc∗kkk−cc)=
sum prob/ to t ; // This g i v e s
an exper imenta l p r o b a b i l i t y

catch
prob (i , j , ccc+cc∗kkk−cc) =0;

end ; //end o f t ry
end ; //end o f the loop on K c o n t r o l s

end ; //end o f the loop on C c o n t r o l s
end ; //end o f the loop on C s t a t e s

end ; //end o f the loop on K s t a t e s
prob

8

endfunction

This last function might take a while so you might wanna launch it before
reading the rest of the document. The next step is to study all the possible
trajectories from any state and to determine the one that maximizes the
probability of being viable on the considered period of time.

function [prob hor , opt imal path]= proba v iab hor i zon (
prob , hor i zon)

h=length (K state) ;
w=length (C state) ;
cc=length (c s t a t e) ;
kk=length (k s t a t e) ;
t o t=length (vec t h) ;

//To get the p r o b a b i l i t y o f be ing v i a b l e without
investment

// (which i s what we con s id e r we do on the l a s t year o f
the hor i zon)

//we e x t r a c t from prob the matrix f o r each s t a t e and no
investment .

// This cor re sponds to 1 f o r the th i rd argument o f prob .
prob hor=prob (: , : , 1) ;

//We need two matr ixes f o r the r e s t o f the func t i on :
// prob hor i s year t and prob var year t−1
// but when we change o f year they must be the same
// because we don ’ t know yet the va lue s f o r year t−1

prob var=prob hor ;
//We a l s o want the optimal path from any s t a t e to
// maximize the p r o b a b i l i t y o f be ing v i a b l e

opt imal path=zeros (h ,w, hor i zon) ;
// Here we go backwards in time

for t t =(hor izon −1) :(−1) : 0
//We begin a loop on the p o s s i b l e C s t a t e s

for j =1:1 :w
//And on the p o s s i b l e K s t a t e s

for i =1:1 :h
//We want the best p r o b a b i l i t y knowing what happens

next :
//we go backwards !

9

maxi=prob hor (i , j)∗prob (i , j , 1) ;
//And when we f i n d the best c o n t r o l s we wr i t e the

opt imal path
opt imal path (j , i , t t +1)=1;

//We try a l l the c o n t r o l s (same system than be f o r e)
for l =2:1 :4

t ry
var=prob hor (i+bool2s (l ==3| l

==4) , j+bool2s (l ==2| l ==4))∗
prob (i , j , l) ;

//we catch i f we are out o f range in prob hor
catch

var =0;
end//end o f t ry

// I f we found something b e t t e r we wr i t e i t
i f var>maxi then

maxi=var ;
opt imal path (j , i , t t +1)=l ;

end //end o f i f
end //end o f c o n t r o l s loop
prob var (i , j)=maxi ; //we found the

best p r o b a b i l i t y f o r t h i s s t a t e
end //end o f K s t a t e s loop

end //end o f C s t a t e s loop
prob hor=prob var ; //we copy prob hor and

prob var
end //end o f time loop

endfunction

Now for each state we have the highest probability of being viable and
the path to achieve that probability.

2.3 Graphical results

Let’s take a look at what we produced.

f=s c f () ;
x =0 :1 : 10 ; y=x ; plot3d (x , y , tab) ;

10

h=get (” hdl ”) ;
h . c o l o r f l a g =1;
f . color map=hotcolormap (1000) ;
xt i t le (’Maximum v i a b i l i t y p r o b a b i l i t i e s f o r each

beg inning s t a t e o f the c i t y ’ , ’K ’ , ’C ’ , ’P ’) ;

You should get something that looks like Figure 1.

Figure 1: Maximum viability probabilities for each initial state

Let’s now take a look at some viability kernels for different levels of prob-
ability of being viable. They are shown in Figure 2

contour2d ([0 : 0 . 1 : 1] , [0 : 2 0 : 2 0 0] , tab
, [0 . 8 , 0 . 9 , 0 . 9 1 , 0 . 9 2 , 0 . 9 3]) ;

xt i t le (’ V i a b i l i t y k e r n e l s ’ , ’K ’ , ’C ’) ;

2.4 Thresholds variations

We have studied how to evaluate the probability to respect the viability
constraints for any given state of the city. Now we will focus on the impact
of thresholds variations on this probability for a given state of the city.

function [tab]= p r o b a v i a b s e u i l s (c , k , hor i zon)
for h=1:11

h max=(h−1)∗15 ;

11

Figure 2: Viability kernels for different levels of probability of being viable

for co s t =1:11
cost max=(cost −1) ∗ . 15∗10ˆ7 ;
prob=viab proba dyn () ;
prob hor=proba v iab hor i zon (prob , hor i zon) ;
tab (cost , h)=prob hor (k , c) ;

end
end

endfunction
// I t i s important to n o t i c e that k and c are not the

r e a l va lue s but the index numbers o f the s t a t e in
K state and C state

We can then plot the result.

f=s c f () ;
x =0 :1 : 10 ; y=x ; plot3d (x , y , tab) ;
h=get (” hdl ”) ;
h . c o l o r f l a g =1;
f . color map=hotcolormap (1000) ;
xt i t le (’ Threso lds v a r i a t i o n s ’ , ’ Cost ’ , ’ Height ’ , ’P ’)

This can take a really long time to compute. This code can be modified in
order to save the result for all of the states at once (which is useful given the
time it takes to compute). The result looks like this.

12

Figure 3: Impact of thresholds variation for a system in the state C=40cm,
K=0.3. The corresponding indexes in C state and K state are respectively 3
and 4.

13

